

Weitere Ableitungsregeln

1) Die Produktregel:

Sind die Funktionen f und g an der Stelle x differenzierbar, so ist auch das Produkt $f \cdot g$ an der Stelle x differenzierbar.

Herleitung der Produktregel: $u(x) = f(x) \cdot g(x)$

$$\begin{split} u'(x) &= \lim_{x \to x_{0}} \frac{f(x) \cdot g(x) - f(x_{0}) \cdot g(x_{0})}{x - x_{0}} = \\ &= \lim_{x \to x_{0}} \frac{f(x) \cdot g(x) - f(x_{0}) \cdot g(x) + f(x_{0}) \cdot g(x) - f(x_{0}) \cdot g(x_{0})}{x - x_{0}} = \\ &= \lim_{x \to x_{0}} \frac{(f(x) - f(x_{0})) \cdot g(x) + f(x_{0}) \cdot (g(x) - g(x_{0}))}{x - x_{0}} = \\ &= \lim_{x \to x_{0}} \frac{f(x) - f(x_{0})}{x - x_{0}} \cdot \lim_{x \to x_{0}} g(x) + f(x_{0}) \cdot \lim_{x \to x_{0}} \frac{g(x) - g(x_{0})}{x - x_{0}} = \\ &= f'(x_{0}) \cdot g(x_{0}) + f(x_{0}) \cdot g'(x_{0}) \end{split}$$

Es gilt also:
$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

2) Die Quotientenregel:

Sind die Funktionen f und g an der Stelle x differenzierbar und ist $g(x) \neq 0$, so ist auch der Quotient $\frac{f}{g}$ an der Stelle x differenzierbar, und es gilt:

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x)^2)}$$

3) Die Kettenregel:

Sind f an der Stelle x und g an der Stelle f(x) differenzierbar, so ist die Verkettung $g \circ f (= g(f(x)))$ an der Stelle x differenzierbar, und es gilt: $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$